skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ravi, Sujith"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Research on multi-use solar—combining solar energy with agriculture (agrivoltaics) or natural vegetation (ecovoltaics)—is developing rapidly, but interdisciplinary integration is needed to better address management issues and to guide future research. Agrivoltaics allows farmers to develop and manage microclimates, which can help to retain or expand agricultural production in the context of changing climate and land-water limitations. However, improvements in food–energy production and other co-benefits are often site-specific, depending on background climate, soil conditions and system design. To optimize multi-use systems, it is essential to consider local economic impacts, ecosystem services and stakeholder perspectives in design and implementation. 
    more » « less
    Free, publicly-accessible full text available July 28, 2026
  2. Concerns over the land use changes impacts of solar photovoltaic (PV) development are increasing as PV energy development expands. Co-locating utility-scale solar energy with vegetation may maintain or rehabilitate the land's ability to provide ecosystem services. Previous studies have shown that vegetation under and around the panels may improve the performance of the co-located PV and that PV may create a favorable environment for the growth of vegetation. While there have been some pilot-scale experiments, the existence and magnitude of these benefits of vegetation has not been confirmed in a utility-scale PV facility over multiple years. In this study we use power output data coupled with microclimatic measurements in temperate climates to assess these potential benefits. This study combines multi-year microclimatic measurements to analyze the physical interactions between PV arrays and the underlying soil-vegetation system in three utility-scale PV facilities in Minnesota, USA. No significant cooling of PV panels or increased power production was observed in PV arrays with underlying vegetation. Fine soil particle fraction was the highest in soils within PV arrays with the vegetation which was attributable to the lowest wind speeds from the compounding suppression of wind by vegetation and PV arrays. Soil moisture and soil nutrient response to re-vegetation varied between PV facilities, which could be attributed to differing soil texture. No statistically significant vegetation-driven panel cooling was observed in this climate. This finding prompts a need for site-specific studies to identify contributing factors for environmental co-benefits in co-located systems. 
    more » « less
  3. Land application of wastewater biosolids on agricultural soils is suggested as a sustainable pathway to support the circular economy; however, this practice often enriches microplastics and associated contaminants in topsoil. Wind could transport these contaminated microplastics, thereby increasing their inhalation health risks. Analyzing wind-borne sediments collected from wind tunnel experiments on biosolid-applied agricultural fields, we show enrichment of microplastics in wind-blown sediments. We explain this preferential transport and enrichment of microplastics by using a theoretical framework. This framework reveals how the combined effects of the low density of microplastics and weakened wet-bonding interparticle forces between microplastics and soil particles lower their threshold velocity, the minimum wind velocity necessary for wind erosion to occur. Our calculations indicate that microplastics could be emitted at wind speeds lower than the characteristic threshold of background soil. Analyzing the windspeed distribution for 3 months of wind events over a bare soil surface, we showed that more than 84% of the wind events exceed the threshold velocity of microplastics of size 150 μm, while only 23% of the wind events exceed the threshold velocity of the background soil. Thus, current models for fugitive dust emissions may underestimate the microplastic emission potential of biosolid-amended soils. 
    more » « less
  4. Abstract Arid and semiarid ecosystems around the world are often prone to both soil salinization and accelerated soil erosion by wind. Soil salinization, the accumulation of salts in the shallow portions of the soil profile, is known for its ability to decreases soil fertility and inhibit plant growth. However, the effect of salts on soil erodibility by wind and the associated dust emissions in the early stages of soil salinization (low salinity conditions) remains poorly understood. Here we use wind tunnel tests to detect the effects of soil salinity on the threshold velocity for wind erosion and dust production in dry soils with different textures treated with salt‐enriched water at different concentrations. We find that the threshold velocity for wind erosion increases with soil salinity. We explain this finding as the result of salt‐induced (physical) aggregation and soil crust formation, and the increasing strength of surface soil crust with increasing soil salinity, depending on soil texture. Even though saline soils showed resistance to wind erosion in the absence of abraders, the salt crusts were readily ruptured by saltating sand grains resulting in comparable or sometimes even higher particulate matter emissions compared to non‐saline soils. Interestingly, the salinity of the emitted dust is found to be significantly higher (5–10 times more) than that of the parent soil, suggesting that soil salts are preferentially emitted, and airborne dust is enriched of salts. 
    more » « less
  5. null (Ed.)
  6. Abstract Co‐locating solar photovoltaics with vegetation could provide a sustainable solution to meeting growing food and energy demands. However, studies quantifying multiple co‐benefits resulting from maintaining vegetation at utility‐scale solar power plants are limited. We monitored the microclimate, soil moisture, panel temperature, electricity generation and soil properties at a utility‐scale solar facility in a continental climate with different site management practices. The compounding effect of photovoltaic arrays and vegetation may homogenize soil moisture distribution and provide greater soil temperature buffer against extreme temperatures. The vegetated solar areas had significantly higher soil moisture, carbon, and other nutrients compared to bare solar areas. Agrivoltaics in agricultural areas with carbon debt can be an effective climate mitigation strategy along with revitalizing agricultural soils, generating income streams from fallow land, and providing pollinator habitats. However, the benefits of vegetation cooling effects on electricity generation are rather site‐specific and depend on the background climate and soil properties. Overall, our findings provide foundational data for site preservation along with targeting site‐specific co‐benefits, and for developing climate resilient and resource conserving agrivoltaic systems. 
    more » « less
  7. Abstract Aeolian sediment transport occurs as a function of, and with feedback to ecosystem changes and disturbances. Many desert grasslands are undergoing rapid changes in vegetation, including the encroachment of woody plants, which alters fire regimes and in turn can change the spatial and temporal patterns of aeolian sediment transport. We investigated aeolian sediment transport and spatial distribution of sediment in the surface soil for 7 years following a prescribed fire using a multiple rare earth element (REE) tracer‐based approach in a shrub‐encroached desert grassland in the northern Chihuahuan desert. Results indicate that even though the aeolian horizontal sediment mass flux increased approximately three‐fold in the first windy season in the burned areas compared to control areas, there were no significant differences after three windy seasons. The soil surface of bare microsites was the major contributor of aeolian sediments in unburned areas (87%), while the shrub microsites contributed the least (<2%) during the observation period. However, after the prescribed fire, the contribution of aeolian sediments from shrub microsites increased considerably (∼40%), indicating post‐fire microsite‐scale sediment redistribution. The findings of this study, which is the first to use multiple REE tracers for multi‐year analysis of the spatial and temporal dynamics of aeolian sediment transport, illustrate how disturbance by prescribed fire can influence aeolian processes and alters dryland soil geomorphology in which distinct soils develop over time at very fine spatial scales of individual plants. 
    more » « less